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Abstract 

Nitrophenols have been catalytically degraded with high efficiency by a novel CuO-aerogel powder with a surface area 
(20 m*/g> having a high Cu(1) content. The reaction proceeds in acid media (room temperature) thermally and more 
efficiently under visible light and O,(air). 
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1. Introduction 

Up to now, direct photolysis has not been 
found effective in processes involving nitrophe- 
nols degradation [ 1,2]. However, heterogeneous 
catalytic systems using TiO, slurries [3] and 
zeolites [4] have been relatively successful for 
this purpose. Also homogeneous Fenton reac- 
tions [5,6] have been reported to be useful in 
this context. Thus, in line with our efforts to 
find new methods for the abatement of these 
non-biodegradable pollutants [7] we tried a new 
copper oxide catalyst under the form of a CuO- 
aerogel. Such an aerogel should present a large 
surface area and possibly the number and vari- 
ety of copper species activating the desired 
catalysis. 

* Corresponding author. Fax: +41-21-6934111. 

2. Experimental 

Cu(II)O, Cu(I),O, 2-nitrophenol, 2,4 and 
2,5dinitrophenols were Fluka reagents and were 
used as received. The CuO-aerogel was synthe- 
sized using the sol-gel method [8,9] involving 
the hydrolysis of a mixture of Ct.@) acetate 
(monohydrated) diluted in 50% acetone in water 
containing a few drops of ammonia as catalyst. 
The resulting mixture was placed in an auto- 
clave with 450 ml of methanol and supercriti- 
tally dried at 250°C. A very fine powder was 
obtained exhibiting a specific surface area of 20 

m2/g. 
Photolysis experiments were carried out by 

means of a Hanau Suntest Lamp (AM 1). The 
radiation flux entering the photolysis flask was 
90 mW/cm2. Photolysis was carried out in 60 
ml Pyrex flasks using 40 ml solutions. Acidifi- 
cation of the samples was carried out with O.lN 
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HCl. The CuO powders were centrifugated out 
of the solution at 10.000 rpm for 30 min and 
subsequently washed several times with water. 
The solutions used to carry out dissolved or- 
ganic carbon (DOC) determination or high pres- 
sure liquid chromatography (HPLC), were fil- 
tered through a 0.1 PMillipore filter before 
analysis. The copper in solution has been as- 
sessed via the neo-cuproin reagent [lo] follow- 
ing the absorption of the Cu-neocuproin com- 
plex in chloroform solution. The absorbance at 
h = 457 nm was measured against appropiate 
blanks. This analysis was capable of determin- 
ing the total amount of Cu in the solution down 
to 1 ppm. To identify specifically the Cu+ ‘-ion 
present we added Fef3 -ions (1 n&I) at pH 2.5. 
The Cu+’ reacts with Fe+3 and the resulting 
Fe+2 complexes with o-phenanthroline. The 
Fe-phenanthroline complex showed a peak at 
A = 510 (E = 1.2 lo4 M-l cm- ‘>. 

nomial fit (Shirley type) with background sub- 
traction. Binding energies were referenced to 
the Au 4f 7,2 gold doublet at 83.8 eV. 

3. Results and discussion 

XPS runs were performed on the CuO-aero- 
gel surface and revealed three species Cu(I), 
C&I), Cu(0) in the corresponding percentages 
of 80, 15 and 5%. By comparison a commercial 
Fluka CuO analyzed by XPS in the same way 
exhibited a composition of Cu(I), Cu(II), Cu(0) 
very different from our catalyst, since it was 
observed in percentages: 5, 90 and 5 respec- 
tively. The latter material had also exhibited a 
surface area of 2 m2/g. 

High pressure liquid chromatography (HPLC) 
was carried out via a Varian 5500 unit. A 
spherisorb silica column with a methanol water 
gradient elution was used. Optical signals were 
detected at A = 315 nm. Dissolved organic car- 
bon (DOC) was monitored via a Shimadzu 500 
instrument. The CO, evolved during the degra- 
dation was followed by gas chromatography 
(CC) Carlo Erba 2000 provided with a Poropak 
Q column. Cyclic voltammetry was carried out 
via Wescan potentiostat (for other details see 
text below). Photoelectron Spectroscopy (XPS) 
was carried out using a Leybold-Heraeus in- 
strument and Mg K CY 1,2 line at 1253.6 eV. The 
quantitative evaluation of the data used a poly- 

Table 1 presents the degradation results for 
2-nitrophenol using different Cu-oxide catalysts. 
Experimental data for the half-time of degrada- 
tion (HPLC), residual carbon after 25 h (DOC) 
and CO, evolved in the dark and under light. 
Results are shown for the different oxides used 
with their different catalytic behaviour towards 
the degradation of the substrate. 

Fig. 1 presents the results for the dark and 
photodegradation of a solution containing 2- 
nitrophenol (0.8 10d3 M) and 1 g/l CuO- 
aerogel. Up to six consecutive degradation cy- 
cles of 2-nitrophenol were tried to test the long 
term performance of the catalyst. After each 
reaction that lasted 24 h fresh nitrophenol was 
added after washing the mediator with water 
before reuse. From Fig. 1 it was seen that CuO 
can be reused over many cycles. Little decrease 

Table 1 
2-Nitrophenol(0.8 X 10e3 M) = A; Cu-Oxide (1 g/l); pH 2.5 (if not included) 

A, A, A, A, DOC, DOC, 
dark, light, dark, light, dark, light, 

Q/Z 4/z left%, left%, left%, left%, 
25 h 25 h 25 h 25 h 

pH 4, 
dark, 

b/2 

pH 4, % stoichio. 
light, CO,, 

4/Z dark, 25 h 

% stoichio. 

co,, 

light, 25 h 

CuO aerogel 3/4 h 1/2h 11 3 19 13 35 h 25 h 4 12 
Cu(I) fluka lh 3/4h 17 33 23 20 40 h 35 h 2 6 
CuCl fluka 4h 2h 67 50 45 35 - - - - 
Cu(II)O fluka >6Oh > 50h 80 70 58 50 - - - - 
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Fig. 1. Catalytical degradation of 2nitrophenol (0.8 X 10-s M) on CuO-aerogel (1 g/l) under light irradiation via a solar simulator (open 
points) and in thermal reactions (dark points). 

was observed in the activity of the CuO-aerogel 
even at relatively long reacton times involving 
many cycles. After a 24 h reaction, a small 
decrease in the initial rate seems to take place 
due to the well known lowering of the disper- 
sion of the active species at the catalyst surface 
during consecutive cycles. In the dark, the 
degradation of 2-nitrophenol was observed to be 
less efficient. Hydroxylic sites on the CuO sur- 

I 1 st Degradation cycle 1 
+, -I+ Cut’ Liqht and Dark 
-+ + total Cu Light and Dark 

3rd Degradation cycle 

face are suggested to be involved in the degra- 
dation process [ l&9]. About 4 * lOi hydroxylic 
sites/cm* could be estimated [9] for the CuO 
aerogel. 

Fig. 2 presents the copper dissolved during 
thermal and light experiments for the first and 
third run for a solution with the same make up 
as the one used in Fig. 1. The soluble copper in 
solution has been determined via the ‘neo- 

0 5 20 25 0 5 20 25 

Fig. 2. Copper in solution during degradation in thermal and light induced reactions as a function of time. Captions to the solutions used 
noted inside the figure. Solutions with the same make-up as in Fig. 1. 
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cuproin’ reagent as mentioned in the experimen- 
tal part. It is readily seen that the total copper in 
the solution decreases more steeply for irradi- 
ated solutions than for the thermal reactions. 
This effect is more pronounced for Cu+ ‘-ion (in 
the dark or under light). This is the species 
mainly responsible for the observed degradation 
and recycling of the Cu-species in Fig. 2. 

Earlier work reported by the Haber-Weiss 
cycle [ll] involved the recycling of the couple 
Fef2/Fe+3 intervening favourably in catalytic 
reactions. This system has been widely used to 
degrade many aromatic compounds in solution 
[1,5,6] in thermal or light induced reactions. 
During our studies it was found that Cu(I1) ions 
added homogeneously to a solution of 2- 
nitrophenol at pH 2.5 in the dark or under light 
did not induce 2-nitrophenol degradation. The 
possible Cu(1) intervention in the matrix of the 
CuO-aerogel is suggested below: 

2Cu(I) + 0, + 2H++ 2Cu(II) + H,O, (1) 
Cu(I1) + H,O, --) Cu(1) + HO, - + H+ 

(Haber-Weiss) (2) 
Cu(1) + H,O, + Cu(I1) + OH + + OH- (3) 

When additional H,O, is added during the 
degradation it accelerated this process indicating 
the favourable intervention of -OH radicals in 

these reactions. The H,O, as such could not be 
analysed since this substance decomposes in the 
presence of Ct.@ [13]. No metallic copper was 
observed during 2-nitrophenol degradation. The 
results (Fig. 2) could be explained by the as- 
sumption that Cu(1) was reoxidized to Cu(II) by 
the oxygen present (air) as shown in Eqs. (l)- 
(3). Oxygen purging accelerated the pho- 
todegradation of 2-nitrophenol by 50% (respect 
to air) while Ar decreased drastically the 
photo-oxidation kinetics. 

In spite of the common assumption that Fen- 
ton reagent produces free . OH radicals, the 
formation in our case of a highly stabilized six 
member complex between Cu+’ and 2- 
nitrophenol could generate a nucleophilic adduct 
(Cu+2-nitrophenol-00H). This species may also 
be the dominant reactive intermediate during the 
degradation [ 121. Fenton-like reagents forming 
electrophilic transition-metal complexes (Fe+2 
or Cu+’ as shown in Fig. 2) have been reported 
in nucleophilic addition to metal centers in 
mechanisms free of . OH radicals [ 131. 

To assess the electron donating capacity of 
2-nitrophenol cyclic voltammetry was carried 
out and the results presented in Fig. 3. The 
oxidation potential was measured using 
Ag/AgCl in saturated KC1 at pH 7. Fig. 3a 
shows a potential of 0.96 V as indicative for the 

b) 

Fig. 3. (a) Cyclic voltammograms of a solution 0.8 X 10e3 M 2-nitrophenol at pH 7 and F’t-electrode. (b) The same solution containing 
2-nitrophenol, CuO-aerogel at pH 2.5. For other details see text. 
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oxidation potential of 2-nitrophenol. Since the 
second cycling is different from the first a film 
of the substrate forms on Pt. This 2-nitrophenol 
film cannot be recycled. When CuO-aerogel is 
added at pH 7, the cyclic voltammograms are 
identical to the ones reported in Fig. 3a. Fig. 3b 
reports on the reaction taking place when CuO- 
aerogel and 2-nitrophenol at pH 2.5. A half 
wave oxidation potential of 1.2 V versus NHE 
was found during the first recycling. The peak 
of the Cu+/Cu+* couple is then seen by 0.23 V 
versus NHE. This latter value for the 
oxidation-reduction potential of CU +/Cu+* on 
the CuO-aerogel matrix is seen to be different 
by 0.16 V from the standard value in solution 
[14]. This latter potential varied in the voltam- 
mograms according to the concentration of the 
catalyst, 2-nitrophenol and gas atmosphere used. 
As detected by XPS, the Cu(I)/Cu(II) existing 
on the catalyst surface would participate in the 
redox reactions taking place. The catalyst al- 
lows these Cu-ions during the reaction to enter 
the solution. During more than 10 consecutive 
degradations, similar results to the ones reported 
in Fig. 2 were observed revealing the stable 
nature of the catalyst used. Cu(I1) probably 
scavenges a significant portion of HO,/O, 
leading to the appearence of Cu(1) [15,16] (see 
Eqs. (4)-(7) below). The second recycling in 
Fig. 3 indicates non reversibility for the oxida- 
tion of the substrate. 

It is suggested that Cu(I)-ions adsorbed on 
the CuO aerogel may be the active degradation 
species under light or in dark reactions. The 
reactions would be heterogeneous-homoge- 
neous in nature. It was observed that C&)-ions 
added homogeneously in solution (from chlo- 
rides or nitrates) did not induce 2-nitrophenol 
degradation either under light or in dark reac- 
tions. In fact Cu(1) irreversibly reacts with 0, 
[15,16] 

Cu(1) + 0, + Cu(II)O; (4) 

Cu(1) + Cu(II)O, + cu*(11)[0;‘] (5) 

CU,(II)[O,~] + H,O 

+ 2Cu(I) + HO0 . , H,O,, R-OH (6) 

and it has been reported that Cu(1) interacts 
strongly forming complexes with N-containing 
groups. 

Other Cu-oxides than the aerogel were also 
tried but they were not effective in catalyzing 
2-nitrophenol photodegradation like Cu(I)O 
Fluka having (1-2 m*/g> and showing 15% 
Cu(1) by XPS measurements. This lends further 
support for Cu(1) containing materials with a 
relative large B.E.T. surface area as being es- 
sential for efficient catalytic action. In addition, 
the amount of photodegradation observed with 
2,4 dinitrophenol and 2,5 dinitrophenol was 
about 50% of the one observed for the mono- 
substituted phenols over a 24 h period. The fact 
that degradation was possible even if it was not 
complete in the case of dinitrophenols is impor- 
tant because biodegradation of dinitrophenols 
by sewage bacteria or activated sludge does not 
proceed at all [7]. This is due to the toxicity of 
the intermediates generated during the biologi- 
cal degradation process. 

The percentage of phenol left after 8 h in the 
Dark (0) and under light (L) is shown in Table 
2 when CuO-aerogel is compared with other 
well known oxidants: H,O, (5 X 10M3 M), 
KMnO, (2 X lop3 M) and K,Cr,O, (2 X 10e3 
M) for the oxidation of 2-nitrophenol. CuO- 
aerogel revealed itself to be more efficient than 
the other strong oxidants listed above. 

The overall oxidation and photo-oxidation of 
2-nitrophenol could be described as: 

C,H,NO, + 2.0H(H202) + 60, 

-+ 6C0, + H,O + HNO, + xC,H,O,N, 

(7) 

The structure of xC,H,O,N, is being deter- 
mined presently in our laboratory. 

The abatement of nitrophenols via novel Cu- 
oxides in heterogeneous systems has been shown 
to proceed in a catalytic fashion. The levels of 
Cu generated in the solution during the photo- 
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oxidation do not attain levels that may affect ropean Communities Environmental Programme 
adversely bacterial strains adapted for Cu elimi- (OFES Contract No. 950031, Bern, Switzer- 
nation. land). 

4. Conclusions 

The photooxidation of nitrophenols has been 
reported here via novel copper oxides with a 
large surface area. The degradation of nitrophe- 
no1 was strongly dependent on the preparation 
and surface characteristics of the Cu-oxide em- 
ployed in the reaction. Cu-ions added homoge- 
neously in the dark or under light did not induce 
any degradation in a variety of phenols tried. 
The oxidation potential of the couple Cu +/Cu + * 
in the CuO variety used was determined to be 
different from the values reported in solution 
under standard conditions. Light induced partial 
mineralization led to CO,, nitrates, nitrites, am- 
monia hydrogen, and an insoluble polymer. 
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